Are you a Brain in a Vat

Suppose evil scientists removed your brain from your body while you slept, and set it up in a life-support system in a vat. Suppose they then set out to trick you into believing that you were not just a brain in a vat, but still up and about, engaging in a normally embodied round of activities in the real world. The brain in a vat is a favorite thought experiment in the toolkit of many philosophers. It is a modern-day version of Descartes's (1641) evil demon, an imagined illusionist bent on tricking Descartes about absolutely everything, including his own existence. But as Descartes observed, even an infinitely powerful evil demon couldn't trick him into thinking he himself existed if he didn't exist: cogito ergo sum, "I think, therefore I am." Philosophers today are less concerned with proving one's own existence as a thinking thing (perhaps because they have decided that Descartes settled that matter quite satisfactorily) and more concerned about what, in principle, we may conclude from our experience about our nature, and about the nature of the world in which we (apparently) live. Might you be nothing but a brain in a vat? Might you have always been just a brain in a vat? If so, could you even conceive of your predicament (let alone confirm it)?

In the standard though experiment, it is obvious that the scientists would have their hands full providing the nerve stumps from all your senses with just the right stimulations to carry off the trickery, but philosophers have assumed for the sake of argument that however technically difficult the task might be, it is "possible in principle." One should be leery of these possibilities in principle. It is also possible in principle to build a stainless-steel ladder to the moon, and to write out, in alphabetical order, all intelligible English conversations consisting of less than a thousand words. But neither of these are remotely possible in fact and sometimes an impossibility in fact is theoretically more interesting than a possibility in principle, as we shall see.

Let's take a moment to consider, then, just how daunting the task facing the evil scientists would be. We can imagine them building up to the hard tasks from some easy beginnings. They begin with a conveniently comatose brain, kept alive but lacking all input from the optic nerves, the auditory nerves, the somatosensory nerves, and all the afferent, or input, paths to the brain. It is sometimes assumed that such a "deafferented" brain would naturally stay in a comatose state forever, needing no morphine to keep it dormant, but there is some empirical evidence to suggest that spontaneous waking might still occur in these dire circumstances. I think we can suppose that were you to awake in such a state, you would find yourself in horrible straits: blind, deaf, completely numb, with no sense of your body's orientation.

Not wanting to horrify you, then, the scientists arrange to wake you up by piping stereo music (suitably encoded as nerve impulses) into your auditory nerves. They also arrange for the signals that would normally come from your vestibular system or inner ear to indicate that you are lying on your back, but otherwise paralyzed, numb, blind. This much should be within the limits of technical virtuosity in the near future--perhaps possible even today. They might then go on to stimulate the tracts that used to innervate your epidermis, providing it with the input that would normally have been produced by a gentle, even warmth over the ventral (belly) surface of your body, and (getting fancier) they might stimulate the dorsal (back) epidermal nerves in a way that simulated the tingly texture of grains of sand pressing into your back. "Great!" you say to yourself: "Here I am, lying on by back on the beach, paralyzed and blind, listening to rather nice music, but probably in danger of sunburn. How did I get here, and how can I call for help?"

But now suppose the scientists, having accomplished all this, tackle the more difficult problem of convincing you that you are not a mere beach potato, but an agent capable of engaging in some of activity in the world. Starting with little steps, they decide to lift part of the "paralysis" of your phantom body and let you wiggle your right index finger in the sand. They permit the sensory experience of moving your finger to occur, which is accomplished by giving you the kinesthetic feedback associated with the relevant volitional or motor signals in the output or efferent part of your nervous system, but they must also arrange to remove the numbness from your phantom finger, and provide the stimulation for the feeling that the motion of the imaginary sand around your finger would provoke.

Suddenly, they are faced with a problem that will quickly get out of hand, for just how the sand will feel depends on just how you decide to move your finger. The problem of calculating the proper feedback, generating or composing it, and then presenting it to you in real time is going to be computationally intractable on even the fastest computer, and if the evil scientists decide to solve the real-time problem by precalculating and "canning" all the possible responses for playback, they will just trade one insoluble problem for another: there are too many possibilities to store. In short, our evil scientists will be swamped by combinatorial explosion as soon as they give you any genuine exploratory powers in this imaginary world.

It is a familiar wall these scientists have hit; we see its shadow in the boring stereotypes in every video game. The alternatives open for action have to be strictly--and unrealistically--limited to keep the task of the world-representers within feasible bounds. If the scientists can do no better than convince you that you are doomed to a lifetime of playing Donkey Dong, they are evil scientists indeed.

There is a solution of sorts to this technical problem. It is the solution used, for instance, to ease the computational burden in highly realistic flight simulators: use replicas of the items in the simulated world. Use a real cockpit and push and pull it with hydraulic lifters, instead of trying to simulate all that input to the seat of the pants of the pilot in training. In short, there is only one way for you to store for ready access that much information about an imaginary world to be explored, and that is to use a real (if tiny or artificial or plaster-of-paris) world to store its own information! This is "cheating" if you're the evil demon claiming to have deceived Descartes about the existence of absolutely everything, but it's a way of actually getting the job done with less than infinite resources.

Descartes was wise to endow his imagined evil demon with infinite powers of trickery. Although the task is not, strictly speaking, infinite, the amount of information obtainable in short order by an inquisitive human being is staggeringly large. Engineers measure information flow in bits per second, or speak of the bandwidth of the channels through which the information flows. Television requires a greater bandwidth than radio, and high-definition television has a still greater bandwidth. High-definition smello-feelo television would have a still greater bandwidth, and interactive smello-feelo televisions would have an astronomical bandwidth, because it constantly branches into thousands of slightly different trajectories through the (imaginary) world. Throw a skeptic a dubious coin, and in a second or two of hefting, scratching, ringing, tasting, and just plain looking at how the sun glints on its surface, the skeptic will consume more bits of information than a Cray supercomputer can organize in a year. Making a real but counterfeit coin is child's play; making a simulated coin out of nothing but organized nerve stimulations is beyond human technology now and probably forever.


The term combinatorial explosion comes from computer science, but the phenomenon was recognized long before computers, for instance in the fable of the emperor who agrees to reward the peasant who saved his life one grain of rice on the first square of the checkerboard, two grains on the second, four on the third, and so forth, doubling the amount for each of the sixty-four squares. He ends up owing the wiley peasant millions of billions of grains of rice (2 64 to be exact). Closer to our example is the plight of the French "aleatoric" novelists who set out to write novels in which, after reading chapter 1, the reader flips a coin and then reads chapter 2a or 2b, depending on the outcome, and then reads chapter 3ab, 3ba, or 3bb after that, and so on, flipping a coin at the end of every chapter. These novelists soon came to realize that they had better minimize the number of choice points if they wanted to avoid an explosion of fiction that would prevent anyone from carrying the whole "book" home from the bookstore.